139 research outputs found

    Numerical investigations of free surface flow in a channel with a long contraction

    Get PDF
    River engineeringNumerical modelling in river engineerin

    REEF3D Wave Generation Interface for Commercial Computational Fluid Dynamics Codes

    Get PDF
    In recent years, computational fluid dynamics (CFD) developments have shown a trend to combine Reynolds-averaged Navier–Stokes (RANS) CFD simulation with other methods such as wave theories or velocity potential-based numerical wave tanks, in order to reduce to computation costs. This is however not a new approach, and there exists a large amount of literature about domain decomposition techniques describing a two way coupling between the RANS CFD models and other methods. One can also observe an increasing popularity in the use of a less sophisticated technique where different fluid solvers are combined with one-way coupling. In these methods, a predefined solution is provided in the far-field, while a three-dimensional (3D) CFD simulation is applied in a limited zone near the structure. The predefined solution is used to specify the background far-field solution. The published solutions use wave theory or a numerical wave tank where the predefined solution is calculated parallel to the RANS solver. In this way, it is possible to reduce the interpolation inaccuracy and the amount of transferred data to the CFD simulation. The disadvantage of this technique is that the far field solver has to be prepared in order to run in parallel with the CFD solver. Due to the one way coupling, it is possible to predefine this information in tables before the CFD simulation. This technique makes it possible to define a general interface between difference solvers without modifying existing codes. This paper presents such a technique where the predefined solution is stored into files.acceptedVersio

    Application of a 6DOF algorithm for the investigation of impulse waves generated due to sub-aerial landslides

    Get PDF
    Inland water bodies such as lakes, rivers and streams are generally considered safe from extreme wave events. Such inland water bodies are susceptible to extreme wave events due to impact of aerial landslides, where a large mass of land impacts the water at high velocities, resulting in a sudden transfer of momentum to the water body. Similar events can occur due to an underwater landslide as well. The evaluation of such extreme events in inland water bodies and the impact of such extreme waves on the regions adjacent to the water body is essential to assess the safety of the constructions on the banks of the water bodies. The generation of extreme waves due to aerial and sub-aerial landslides depends on several parameters such as the height of fall, the composition of the impacting land mass and the bottom slope of the water body. In this paper, the 6DOF algorithm implemented in the open source Computational Fluid Dy- namics (CFD) model REEF3D is used to simulate the motion of a sliding wedge impacting the water free surface. This is used to represent a sliding landmass impacting water after a landslide event. The wedge is represented using a primitive triangular surface mesh and a ray-tracing algorithm is used to determine the position of the object with respect to the underlying grid. Further, the level set method is then used to represent the solid boundary. The motion of the wedge is obtained by propagating the level set equation. The interaction of the wedge with the free water surface is obtained in a sharp and accurate manner using the level set method for both the water free surface and the solid boundary. REEF3D uses a staggered Cartesian numerical grid with a fifth-order WENO scheme for convection discretisation and a third-order Runge- Kutta scheme for time advancement. With the higher-order methods and the level set method, the model can be used to calculate detailed flow information such as the pressure changes in the water on impact and the associated deformation of the water free surface. The accurate representation of these characteristics is essential for correctly evaluating the height and period of the generated extreme wave and associated properties such as the wave celerity and wave run up on the banks during the extreme event
    corecore